Researchers develop a novel bilayer tin oxide electron transport layer for improving efficiency of back contact solar cells JEONBUK-DO, South Korea, Dec. 17, 2025Researchers develop a novel bilayer tin oxide electron transport layer for improving efficiency of back contact solar cells JEONBUK-DO, South Korea, Dec. 17, 2025

Jeonbuk National University Researchers Reveal New Interface Engineering Strategy for Efficient and Stable Back-Contact Solar Cells

Researchers develop a novel bilayer tin oxide electron transport layer for improving efficiency of back contact solar cells

JEONBUK-DO, South Korea, Dec. 17, 2025 /PRNewswire/ — As the demand for renewable energy grows, scientists are developing new types of solar cells that are both highly efficient and scalable. The back-contact perovskite solar cell (BC-PSC) is one such innovative architecture, emerging as a promising alternative to traditional front-contact designs. In conventional perovskite solar cells, the electrode contacts and charge transport materials are placed on the front of the device – the surface that faces the sun. Because incoming light must first pass through these layers before reaching the active perovskite material, a portion of the light is inevitably lost.

In contrast, BC-PSCs position the perovskite absorber layer at the top of the stack, allowing direct sunlight exposure, while electron and hole-collection contacts are positioned at the back. When light falls on the perovskite layer, it generates holes and electrons, which subsequently migrate to their respective transport layers to produce photocurrent. This design minimizes optical losses, enhances charge collection, and improves power conversion efficiency. However, this design introduces new challenges. Since charge carriers must travel longer distances, they are more likely to encounter interfacial defects, leading to recombination losses. This leads to reduced efficiency and stability, limiting practical application.

In a breakthrough, a research team led by Associate Professor Min Kim from the Department of Chemical Engineering, University of Seoul, Republic of Korea and Mr. Dohun Baek, a PhD student from the School of Chemical Engineering, Jeonbuk National University, Republic of Korea, has developed a novel bilayer tin oxide (SnO2) electron transport layer (ETL), via a simple spin-coating method, that significantly improves the efficiency and stability of BC-PSCs. The study was made available online on July 04, 2025, and published in Volume 654 of the Journal of Power Sources on October 30, 2025.

“We selected SnO2 for the ETL due to its favorable conduction band alignment with perovskite and superior electron mobility compared to conventional titanium oxide. As a result, our bilayer ETL enhances interfacial contact, reduces recombination losses, and optimizes energy alignment for electron charge carriers,” explains Dr. Kim.  

To evaluate the role of ETL engineering, the researchers fabricated three BC-PSC devices with different SnO2-based ETLs: a colloidal SnO2 made of nanoparticles, a sol-gel SnO2, and a bilayer SnO2 consisting of a nanoparticle SnO2 layer combined with a sol-gel layer. Each ETL was spin-coated onto indium tin oxide substrates and patterned via photolithography.

The researchers conducted a series of experiments to compare the performance of the devices. The results showed that the device with bilayer SnO2 yielded the highest average photocurrent of 33.67 picoamperes (pA), outperforming the sol-gel SnO2 device at 26.69 pA and the colloidal SnO2 device at 14.65 pA. Furthermore, the bilayer SnO2 device also achieved a maximum power conversion efficiency of 4.52%, highest among the three, and improved operational stability, owing to its enhanced suppression of charge recombination.

“BC-PSC devices hold great promise for a variety of applications, including flexible devices and large-area solar modules, due to their high efficiency, enhanced stability, and scalable design. We believe our findings will help accelerate the development of practical BC-PSC technologies for real-world applications while advancing sustainable energy solutions,” concludes Mr. Baek.

Reference

Title of original paper:

Interface engineering for efficient and stable back-contact perovskite solar cells

Journal:

Journal of Power Sources

DOI:

10.1016/j.jpowsour.2025.237703

About Jeonbuk National University

Website: https://www.jbnu.ac.kr/en/index.do

Media Contact:
Yoonbeom Kim
82 63 270 4638
[email protected]

Cision View original content to download multimedia:https://www.prnewswire.com/news-releases/jeonbuk-national-university-researchers-reveal-new-interface-engineering-strategy-for-efficient-and-stable-back-contact-solar-cells-302644274.html

SOURCE Jeonbuk National University

Market Opportunity
STABLE Logo
STABLE Price(STABLE)
$0.01104
$0.01104$0.01104
-16.42%
USD
STABLE (STABLE) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Ethereum unveils roadmap focusing on scaling, interoperability, and security at Japan Dev Conference

Ethereum unveils roadmap focusing on scaling, interoperability, and security at Japan Dev Conference

The post Ethereum unveils roadmap focusing on scaling, interoperability, and security at Japan Dev Conference appeared on BitcoinEthereumNews.com. Key Takeaways Ethereum’s new roadmap was presented by Vitalik Buterin at the Japan Dev Conference. Short-term priorities include Layer 1 scaling and raising gas limits to enhance transaction throughput. Vitalik Buterin presented Ethereum’s development roadmap at the Japan Dev Conference today, outlining the blockchain platform’s priorities across multiple timeframes. The short-term goals focus on scaling solutions and increasing Layer 1 gas limits to improve transaction capacity. Mid-term objectives target enhanced cross-Layer 2 interoperability and faster network responsiveness to create a more seamless user experience across different scaling solutions. The long-term vision emphasizes building a secure, simple, quantum-resistant, and formally verified minimalist Ethereum network. This approach aims to future-proof the platform against emerging technological threats while maintaining its core functionality. The roadmap presentation comes as Ethereum continues to compete with other blockchain platforms for market share in the smart contract and decentralized application space. Source: https://cryptobriefing.com/ethereum-roadmap-scaling-interoperability-security-japan/
Share
BitcoinEthereumNews2025/09/18 00:25
MMDA, sleep health organization launch drowsy driving campaign ahead of holidays

MMDA, sleep health organization launch drowsy driving campaign ahead of holidays

The Metro Manila Development Authority (MMDA) and the Philippine Society of Sleep Medicine (PSSM) on Wednesday launch an awareness campaign to prevent drowsy driving
Share
Bworldonline2025/12/18 12:05
A Netflix ‘KPop Demon Hunters’ Short Film Has Been Rated For Release

A Netflix ‘KPop Demon Hunters’ Short Film Has Been Rated For Release

The post A Netflix ‘KPop Demon Hunters’ Short Film Has Been Rated For Release appeared on BitcoinEthereumNews.com. KPop Demon Hunters Netflix Everyone has wondered what may be the next step for KPop Demon Hunters as an IP, given its record-breaking success on Netflix. Now, the answer may be something exactly no one predicted. According to a new filing with the MPA, something called Debut: A KPop Demon Hunters Story has been rated PG by the ratings body. It’s listed alongside some other films, and this is obviously something that has not been publicly announced. A short film could be well, very short, a few minutes, and likely no more than ten. Even that might be pushing it. Using say, Pixar shorts as a reference, most are between 4 and 8 minutes. The original movie is an hour and 36 minutes. The “Debut” in the title indicates some sort of flashback, perhaps to when HUNTR/X first arrived on the scene before they blew up. Previously, director Maggie Kang has commented about how there were more backstory components that were supposed to be in the film that were cut, but hinted those could be explored in a sequel. But perhaps some may be put into a short here. I very much doubt those scenes were fully produced and simply cut, but perhaps they were finished up for this short film here. When would Debut: KPop Demon Hunters theoretically arrive? I’m not sure the other films on the list are much help. Dead of Winter is out in less than two weeks. Mother Mary does not have a release date. Ne Zha 2 came out earlier this year. I’ve only seen news stories saying The Perfect Gamble was supposed to come out in Q1 2025, but I’ve seen no evidence that it actually has. KPop Demon Hunters Netflix It could be sooner rather than later as Netflix looks to capitalize…
Share
BitcoinEthereumNews2025/09/18 02:23