Offloading expensive computation to off-chain for saving gas, as simple & fast as possiblePhoto by Shubham Dhage on Unsplash, more artworks at http://guerrillabuzz.com/ Table of Contents i. Introductionii. Practical exampleiii. Conclusion Introduction Ethereum’s high gas problem should not be unfamiliar to you, as a crypto trader, a blockchain developer, or just an enthusiast in the space. With Ether's price standing strong in the $3000 area and gas price on the rise averaging 50–70 Gwei, the gas fee for every transaction is getting more expensive and takes about $4 USD for a simple transfer. There is a way to go around the gas problem, is to put this computation off-chain and let the server do the work. A lot of tutorials online teaching ECDSA involves the use of maths, something about s, r, v, which we all developers (code monkeys) can agree, is boring and difficult to implement without bugs. So in this article, we are just gonna use the built-in functions from contracts written by OpenZeppelin and Ethers.js to build this feature. Practical example In this project, we are going to use a common use case for ECDSA to demonstrate the method, which is setting up a whitelist for an NFT project, and include code snippets to help you get started. This project is written in JavaScript and Solidity. 1. Setup To prepare for ECDSA, you should create a new wallet and use it only for this project as the signature signer. Do not use this wallet for any other purpose but only for signing the message in this project. After creating the wallet, save its private key for later use. 2. Off-chain Signature 2.1. To get started, we will need to first install Ether.js by running: npm run ethers and importing it into the project by: import ethers from ethers 2.2. Then we can initialize the signer instance by creating a new Wallet using the library: const signer = new ethers.Wallet("0x" + "<your private key>"); Remember to add 0x in the prefix of your private key if you exported directly from Metamask. 2.3. Pack the message together, and we can try to pack the address and the nonce for whitelisting: let message = ethers.utils.solidityPack(["address", "uint256"], ["0xabc", "0"]); This is to concatenate the message together to be hashed in the next section. Ethers.js supports a wide range of variables, including string and array like uint256[]: 2.4. Hash the message with keccak256 and sign with the signer wallet: message = ethers.utils.solidityKeccak256(["bytes"], [message]);const signature = await signer.signMessage(ethers.utils.arrayify(message)); This signature is the signature signed for the message with the signer's private key. We can pass this signature along with the verified parameters into the blockchain to ensure that the parameters are valid. The whole code snippet:https://medium.com/media/b7bf0931c9291dc5ff9d222c2f8a4753/href 3. On-chain Verification 3.1. To verify the signature on-chain, we can make use of the contract EDCSA written by OpenZeppelin. To use it, install Openzepplin locally or use it in Remix: npm install @openzeppelin/contracts 3.2. Set up the storage for signer on-chain with a setter: address signer; function setSigner(address _signer) external { signer = _signer;} 3.3. Then pack the values together by abi.encodePacked and hash it with keccack256: bytes32 hash = keccak256(abi.encodePacked(msg.sender, nonce)); 3.4. Turn the signature to an Ethereum signed message: bytes32 message = ECDSA.toEthSignedMessageHash(hash); 3.5. Recover the signer address from the signature: address receivedAddress = ECDSA.recover(message, signature); 3.6. Check if the signer of the message matches the signer store on-chain, only approve if the signer matches: require(receivedAddress != address(0) && receivedAddress == signer); The whole code snippet is:https://medium.com/media/9d470e1a4f48d90b838f2c876555677c/href Conclusion And now you learned how to use ECDSA as simply as possible, without the use of any complex maths. However, there are also tradeoffs of putting computation off-chain but that is beyond the scope of this article. I am going to explain more on this so follow to stay tuned! Want to Connect? You can find me at Twitter Github Discord. Verify Off-chain Results and Whitelist With ECDSA in Solidity Using OpenZeppelin and Ethers.js was originally published in Coinmonks on Medium, where people are continuing the conversation by highlighting and responding to this storyOffloading expensive computation to off-chain for saving gas, as simple & fast as possiblePhoto by Shubham Dhage on Unsplash, more artworks at http://guerrillabuzz.com/ Table of Contents i. Introductionii. Practical exampleiii. Conclusion Introduction Ethereum’s high gas problem should not be unfamiliar to you, as a crypto trader, a blockchain developer, or just an enthusiast in the space. With Ether's price standing strong in the $3000 area and gas price on the rise averaging 50–70 Gwei, the gas fee for every transaction is getting more expensive and takes about $4 USD for a simple transfer. There is a way to go around the gas problem, is to put this computation off-chain and let the server do the work. A lot of tutorials online teaching ECDSA involves the use of maths, something about s, r, v, which we all developers (code monkeys) can agree, is boring and difficult to implement without bugs. So in this article, we are just gonna use the built-in functions from contracts written by OpenZeppelin and Ethers.js to build this feature. Practical example In this project, we are going to use a common use case for ECDSA to demonstrate the method, which is setting up a whitelist for an NFT project, and include code snippets to help you get started. This project is written in JavaScript and Solidity. 1. Setup To prepare for ECDSA, you should create a new wallet and use it only for this project as the signature signer. Do not use this wallet for any other purpose but only for signing the message in this project. After creating the wallet, save its private key for later use. 2. Off-chain Signature 2.1. To get started, we will need to first install Ether.js by running: npm run ethers and importing it into the project by: import ethers from ethers 2.2. Then we can initialize the signer instance by creating a new Wallet using the library: const signer = new ethers.Wallet("0x" + "<your private key>"); Remember to add 0x in the prefix of your private key if you exported directly from Metamask. 2.3. Pack the message together, and we can try to pack the address and the nonce for whitelisting: let message = ethers.utils.solidityPack(["address", "uint256"], ["0xabc", "0"]); This is to concatenate the message together to be hashed in the next section. Ethers.js supports a wide range of variables, including string and array like uint256[]: 2.4. Hash the message with keccak256 and sign with the signer wallet: message = ethers.utils.solidityKeccak256(["bytes"], [message]);const signature = await signer.signMessage(ethers.utils.arrayify(message)); This signature is the signature signed for the message with the signer's private key. We can pass this signature along with the verified parameters into the blockchain to ensure that the parameters are valid. The whole code snippet:https://medium.com/media/b7bf0931c9291dc5ff9d222c2f8a4753/href 3. On-chain Verification 3.1. To verify the signature on-chain, we can make use of the contract EDCSA written by OpenZeppelin. To use it, install Openzepplin locally or use it in Remix: npm install @openzeppelin/contracts 3.2. Set up the storage for signer on-chain with a setter: address signer; function setSigner(address _signer) external { signer = _signer;} 3.3. Then pack the values together by abi.encodePacked and hash it with keccack256: bytes32 hash = keccak256(abi.encodePacked(msg.sender, nonce)); 3.4. Turn the signature to an Ethereum signed message: bytes32 message = ECDSA.toEthSignedMessageHash(hash); 3.5. Recover the signer address from the signature: address receivedAddress = ECDSA.recover(message, signature); 3.6. Check if the signer of the message matches the signer store on-chain, only approve if the signer matches: require(receivedAddress != address(0) && receivedAddress == signer); The whole code snippet is:https://medium.com/media/9d470e1a4f48d90b838f2c876555677c/href Conclusion And now you learned how to use ECDSA as simply as possible, without the use of any complex maths. However, there are also tradeoffs of putting computation off-chain but that is beyond the scope of this article. I am going to explain more on this so follow to stay tuned! Want to Connect? You can find me at Twitter Github Discord. Verify Off-chain Results and Whitelist With ECDSA in Solidity Using OpenZeppelin and Ethers.js was originally published in Coinmonks on Medium, where people are continuing the conversation by highlighting and responding to this story

Verify Off-chain Results and Whitelist With ECDSA in Solidity Using OpenZeppelin and Ethers.js

2025/09/09 21:02
4 min read

Offloading expensive computation to off-chain for saving gas, as simple & fast as possible

Photo by Shubham Dhage on Unsplash, more artworks at http://guerrillabuzz.com/
Table of Contents
i.   Introduction
ii. Practical example
iii. Conclusion

Introduction

Ethereum’s high gas problem should not be unfamiliar to you, as a crypto trader, a blockchain developer, or just an enthusiast in the space. With Ether's price standing strong in the $3000 area and gas price on the rise averaging 50–70 Gwei, the gas fee for every transaction is getting more expensive and takes about $4 USD for a simple transfer.

There is a way to go around the gas problem, is to put this computation off-chain and let the server do the work.

A lot of tutorials online teaching ECDSA involves the use of maths, something about s, r, v, which we all developers (code monkeys) can agree, is boring and difficult to implement without bugs. So in this article, we are just gonna use the built-in functions from contracts written by OpenZeppelin and Ethers.js to build this feature.

Practical example

In this project, we are going to use a common use case for ECDSA to demonstrate the method, which is setting up a whitelist for an NFT project, and include code snippets to help you get started.

This project is written in JavaScript and Solidity.

1. Setup

To prepare for ECDSA, you should create a new wallet and use it only for this project as the signature signer. Do not use this wallet for any other purpose but only for signing the message in this project.

After creating the wallet, save its private key for later use.

2. Off-chain Signature

2.1. To get started, we will need to first install Ether.js by running:

npm run ethers

and importing it into the project by:

import ethers from ethers

2.2. Then we can initialize the signer instance by creating a new Wallet using the library:

const signer = new ethers.Wallet("0x" + "<your private key>");

Remember to add 0x in the prefix of your private key if you exported directly from Metamask.

2.3. Pack the message together, and we can try to pack the address and the nonce for whitelisting:

let message = ethers.utils.solidityPack(["address", "uint256"], ["0xabc", "0"]);

This is to concatenate the message together to be hashed in the next section. Ethers.js supports a wide range of variables, including string and array like uint256[]:

2.4. Hash the message with keccak256 and sign with the signer wallet:

message = ethers.utils.solidityKeccak256(["bytes"], [message]);
const signature = await signer.signMessage(ethers.utils.arrayify(message));

This signature is the signature signed for the message with the signer's private key.

We can pass this signature along with the verified parameters into the blockchain to ensure that the parameters are valid.

The whole code snippet:

https://medium.com/media/b7bf0931c9291dc5ff9d222c2f8a4753/href

3. On-chain Verification

3.1. To verify the signature on-chain, we can make use of the contract EDCSA written by OpenZeppelin. To use it, install Openzepplin locally or use it in Remix:

npm install @openzeppelin/contracts

3.2. Set up the storage for signer on-chain with a setter:

address signer;
function setSigner(address _signer) external { 
signer = _signer;
}

3.3. Then pack the values together by abi.encodePacked and hash it with keccack256:

bytes32 hash = keccak256(abi.encodePacked(msg.sender, nonce));

3.4. Turn the signature to an Ethereum signed message:

bytes32 message = ECDSA.toEthSignedMessageHash(hash);

3.5. Recover the signer address from the signature:

address receivedAddress = ECDSA.recover(message, signature);

3.6. Check if the signer of the message matches the signer store on-chain, only approve if the signer matches:

require(receivedAddress != address(0) && receivedAddress == signer);

The whole code snippet is:

https://medium.com/media/9d470e1a4f48d90b838f2c876555677c/href

Conclusion

And now you learned how to use ECDSA as simply as possible, without the use of any complex maths. However, there are also tradeoffs of putting computation off-chain but that is beyond the scope of this article. I am going to explain more on this so follow to stay tuned!

Want to Connect?
You can find me at Twitter Github Discord.

Verify Off-chain Results and Whitelist With ECDSA in Solidity Using OpenZeppelin and Ethers.js was originally published in Coinmonks on Medium, where people are continuing the conversation by highlighting and responding to this story.

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Fed Decides On Interest Rates Today—Here’s What To Watch For

Fed Decides On Interest Rates Today—Here’s What To Watch For

The post Fed Decides On Interest Rates Today—Here’s What To Watch For appeared on BitcoinEthereumNews.com. Topline The Federal Reserve on Wednesday will conclude a two-day policymaking meeting and release a decision on whether to lower interest rates—following months of pressure and criticism from President Donald Trump—and potentially signal whether additional cuts are on the way. President Donald Trump has urged the central bank to “CUT INTEREST RATES, NOW, AND BIGGER” than they might plan to. Getty Images Key Facts The central bank is poised to cut interest rates by at least a quarter-point, down from the 4.25% to 4.5% range where they have been held since December to between 4% and 4.25%, as Wall Street has placed 100% odds of a rate cut, according to CME’s FedWatch, with higher odds (94%) on a quarter-point cut than a half-point (6%) reduction. Fed governors Christopher Waller and Michelle Bowman, both Trump appointees, voted in July for a quarter-point reduction to rates, and they may dissent again in favor of a large cut alongside Stephen Miran, Trump’s Council of Economic Advisers’ chair, who was sworn in at the meeting’s start on Tuesday. It’s unclear whether other policymakers, including Kansas City Fed President Jeffrey Schmid and St. Louis Fed President Alberto Musalem, will favor larger cuts or opt for no reduction. Fed Chair Jerome Powell said in his Jackson Hole, Wyoming, address last month the central bank would likely consider a looser monetary policy, noting the “shifting balance of risks” on the U.S. economy “may warrant adjusting our policy stance.” David Mericle, an economist for Goldman Sachs, wrote in a note the “key question” for the Fed’s meeting is whether policymakers signal “this is likely the first in a series of consecutive cuts” as the central bank is anticipated to “acknowledge the softening in the labor market,” though they may not “nod to an October cut.” Mericle said he…
Share
BitcoinEthereumNews2025/09/18 00:23
Robinhood Chain Public Testnet Launch: A Strategic Pivot into Ethereum’s Layer 2 Ecosystem

Robinhood Chain Public Testnet Launch: A Strategic Pivot into Ethereum’s Layer 2 Ecosystem

BitcoinWorld Robinhood Chain Public Testnet Launch: A Strategic Pivot into Ethereum’s Layer 2 Ecosystem In a significant move that expands its footprint beyond
Share
bitcoinworld2026/02/11 10:05
Russian State Duma passes bill on cryptocurrency seizure and confiscation procedures

Russian State Duma passes bill on cryptocurrency seizure and confiscation procedures

PANews reported on February 11 that, according to Bits.media, the Russian State Duma has passed a procedural law on the seizure and confiscation of cryptocurrencies
Share
PANews2026/02/11 09:54