分布式 AI 实验室 Gradient 今日发布 Echo-2 分布式强化学习框架(arxiv.org/pdf/2602.02192),旨在打破 AI 研究训练效率壁垒。通过在架构…分布式 AI 实验室 Gradient 今日发布 Echo-2 分布式强化学习框架(arxiv.org/pdf/2602.02192),旨在打破 AI 研究训练效率壁垒。通过在架构…

Gradient 发布 Echo-2 RL框架,提升AI科研效率超10倍

2026/02/13 16:57
阅读时长 2 分钟

分布式 AI 实验室 Gradient 今日发布 Echo-2 分布式强化学习框架(arxiv.org/pdf/2602.02192),旨在打破 AI 研究训练效率壁垒。通过在架构层实现 Learner 与 Actor 的彻底解耦,Echo-2 将 30B 模型的后训练成本从 4,500 美元骤降至 425 美元。在同等预算下,带来超过10倍的科研吞吐。

该框架利用存算分离技术进行异步训练 (Async RL),将海量的采样算力卸载至不稳定显卡实例与基于 Parallax 的异构显卡。配合有界陈旧性、实例容错调度、与自研 Lattica 通讯协议等技术突破,在保证模型精度的同时大幅提升训练效率。伴随框架发布,Gradient 也即将推出 RLaaS 平台 Logits,推动 AI 研究从“资本堆砌”向“效率迭代”范式转移。Logits现已面向全球学生与研究人员开放预约 (logits.dev)。

关于 Gradient

Gradient 是一家致力于构建分布式基础设施的AI实验室,专注于前沿大模型的分布式训练、服务与部署。Gradient获得了顶级投资机构支持,正在构建一个开放高效的未来智能时代。

免责声明: 本网站转载的文章均来源于公开平台,仅供参考。这些文章不代表 MEXC 的观点或意见。所有版权归原作者所有。如果您认为任何转载文章侵犯了第三方权利,请联系 [email protected] 以便将其删除。MEXC 不对转载文章的及时性、准确性或完整性作出任何陈述或保证,并且不对基于此类内容所采取的任何行动或决定承担责任。转载材料仅供参考,不构成任何商业、金融、法律和/或税务决策的建议、认可或依据。